Xarxa de Bravais

En geometria i cristal·lografia les xarxes de Bravais, estudiades per Auguste Bravais, són una disposició regular de punts discrets - anomenats nodes - l'estructura dels quals és invariant sota translacions. En la majoria de casos també es dona una invariància sota rotacions o simetria rotacional. Aquestes propietats fan que des de tots els nodes d'una xarxa de Bravais es tingui la mateixa perspectiva de la xarxa. Es diu llavors que els punts d'una xarxa de Bravais són equivalents.

Els nodes poden imaginar-se com els vèrtexs de les cel·les, és a dir, les porcions de l'espai dins de les quals, l'estructura cristal·lina es pot dividir. L'estructura és en aquest moment reconstruïda per simple translació de la cel·la. La determinació segons una xarxa de Bravais no és prou per caracteritzar un cristall: d'una part, el cristall es constitueix d'àtoms i no de nodes i per l'altra, les cel·les poden contenir més àtoms, que fan que les simetries de cel·la no són forçosament les simetries de l'estructura cristal·lina: aquest és el cas dels cristalls meroedres. A causa del fet que la simetria completa d'una xarxa de Bravais també pot donar-se dins d'una estructura cristal·lina, també es parla de cristalls holoedres.

Mitjançant teoria de grups s'ha demostrat que solament existeix una única xarxa de Bravais unidimensional, 5 xarxes bidimensionals i 14 models distints de xarxes tridimensionals.[1]

  1. Jarrell, Mark. «Chapter 2: Crystal Structures and Symmetry» pp 3 i 8. Cincinnati, OH 45221-0011: Departament de Física, Universitat de Cincinnati, Desembre 2001.

Developed by StudentB